skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gregory, T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 13, 2026
  2. Free, publicly-accessible full text available March 1, 2026
  3. Wenner, Julianne (Ed.)
    This qualitative study investigates the development of science teacher leaders during and after professional development. It examines the impactful experiences during a teacher leadership program that allowed them to explore their leadership identity and how this identity manifests in their schools’ post-program. The participants are 14 chemistry and physics teacher leaders from schools in the Southeastern U.S. who attended a five-year Noyce teacher leadership program. They are emergent leaders who entered the program with limited leadership exposure or expertise. Social learning theory provides the lens to examine during and post-program interviews with science teacher leaders. Three themes emerge from the interviews: 1) Redefining leadership, 2) Responsibility for others, and 3) Collaborative community that developed the science teacher leadership identity during and after the program. The findings from this study have theoretical and practical implications for teacher leaders, schools, and leadership development programs. 
    more » « less
  4. Glacial meltwater contributions to streams depend on watershed characteristics that impact water quantity and quality, with potential changes as glaciers continue to recede. The purpose of our study was to investigate the influence of glacier and bedrock controls on water chemistry in glacial streams, focusing on a range of small to large watersheds in Alaska. Southcentral Alaska provides an ideal study area due to diverse geologic characteristics and varying amounts of glacial coverage across watersheds. To investigate spatial and temporal variability due to glacial coverage and bedrock type, we analyzed water samples (n= 343) from seven watersheds over 2 years for major and trace element concentrations and water stable isotopes. We found variable water chemistry across the glacial rivers related to glacial coverage and the relative amount of metamorphic, sedimentary, and igneous bedrock. Some sites had elevated concentrations of harmful trace elements like As and U from glacier melt or groundwater. Longitudinal (upstream to downstream) variability was apparent within each river, with increasing inputs from tributaries, and groundwater altering the water chemistry relative to glacier meltwater contributions. The water chemistry and isotopic composition of river samples compared with endmember sources suggested a range from glacier-dominated to groundwater-dominated sites along stream transects. For example, water chemistry in the Knik and Matanuska rivers (with large contributing glaciers) was more influenced by glacier meltwater, while water chemistry in the Little Susitna River (with small glaciers) was more influenced by groundwater. Across all rivers, stream chemistry was controlled by glacier inputs near the headwaters and groundwater inputs downstream, with the water chemistry reflecting bedrock type. Our study provides a greater understanding of geochemical and hydrological processes controlling water resources in rapidly changing glacial watersheds. 
    more » « less
    Free, publicly-accessible full text available April 10, 2026
  5. Free, publicly-accessible full text available July 30, 2026
  6. Free, publicly-accessible full text available February 19, 2026
  7. Dust events originate from multiple sources in arid and semi-arid regions, making it difficult to quantify source contributions. Dust geochemical/mineralogical composition, if the sources are sufficiently distinct, can be used to quantify the contributions from different sources. To test the viability of using geochemical and mineralogical measurements to separate dust-emitting sites, we used dust samples collected between 2018 and 2020 from ten National Wind Erosion Research Network (NWERN) sites that are representative of western United States (US) dust sources. Dust composition varied seasonally at many of the sites, but within-site variability was smaller than across-site variability, indicating that the geochemical signatures are robust over time. It was not possible to separate all the sites using commonly applied principal component analysis (PCA) and cluster analysis because of overlap in dust geochemistry. However, a linear discriminant analysis (LDA) successfully separated all sites based on their geochemistry, suggesting that LDA may prove useful for separating dust sources that cannot be separated using PCA or other methods. Further, an LDA based on mineralogical data separated most sites using only a limited number of mineral phases that were readily explained by the local geologic setting. Taken together, the geochemical and mineralogical measurements generated distinct signatures of dust emissions across NWERN sites. If expanded to include a broader range of sites across the western US, a library of geochemical and mineralogical data may serve as a basis to track and quantify dust contributions from these sources. 
    more » « less